
Hans-Peter Dietz
h.p.dietz@gmail.com
@h_p_d
https://haensl.github.io 2016

mailto:h.p.dietz@gmail.com
https://twitter.com/h_p_d
https://haensl.github.io

CONTENTS CONTENTS

Contents
1 Configuration Management 1

2 Ansible: Automation for everyone 2
2.1 Characteristics . 3
2.2 The Basics . 5

2.2.1 Inventory . 7
2.2.2 Variables, Facts & Templates . 7
2.2.3 Roles . 8

2.3 Operation . 9
2.3.1 Setup . 9
2.3.2 Command Line Interface (CLI) 9
2.3.3 Configuration . 9
2.3.4 Playbook Handling . 10
2.3.5 Maintainance . 10
2.3.6 Advanced Features & Usage Scenarios 11

2.4 Showcase: VMPHP . 11
2.5 Performance vs. competitors . 12

3 Conclusion 12

1 CONFIGURATION MANAGEMENT

1 Configuration Management
The practice of continuous integration and continuous delivery induced by lean and ag-
ile software development has gained traction within the last decade [40] [13]. One of
the reasons for this trend being “that long release cycles ("waterfall projects") have dra-
matically higher overhead than more frequently released ("iterative" or "agile") shorter
cycles” [34]. In order to achieve such short release cycles, tools and techniques are re-
quired to facilitate the process - so called continuous integration (CI)1 and continuous
delivery (CD)2 automation tools.

This development away from traditional long term release cycles therefore is now
replaced by “stringing together services that run on a distributed set of computing re-
sources and communicate over different networking protocols” [16]. Wiring up such
services manually can surely be done - booting up servers, SSHing to them and installing
packages, configuring services etc. - but it is error prone and time-consuming [16].

While CI/CD tools facilitate the automation of the software release process, provi-
sioning and maintenance of IT systems, including the ones running CI/CD tools, is the
responsibility of configuration management solutions:

“The purpose of Software Configuration Management is to establish and
maintain the integrity of the products of the software project throughout the
project’s software life cycle. Software Configuration Management involves
identifying configuration items for the software project, controlling these con-
figuration items and changes to them, and recording and reporting status and
change activity for these configuration items.” [39]

Configuration Management therefore forms a discipline which encompasses evalua-
tion, coordination and implementation of changes in artefacts used in construction and
maintenance of software systems [39].

In practice this means that configuration management deals with tasks such as:

• Recording details about computer systems

• Installing and configuring the system (e.g. networking)

• Installing and configuring application software (e.g. Docker [11])

• Updating system software and patching security issues

In support of configuration management tasks a variety of different software solutions
have been built. Some of the currently most popular solutions include:

PUPPET Established, Ruby based, open source industry standard in configuration man-
agement by PUPPET LABS [23]

1Continuous integration (CI): Build systems that watch source control, on change run tests and build the
latest version. Examples include Jenkins [17] and Bamboo [2].

2Continuous delivery (CD): Systems which automatically (e.g. triggered via SCM hooks or network
events) deploy application artefacts to any given environment (e.g. QA, production).

1

2 ANSIBLE: AUTOMATION FOR EVERYONE

CHEF Code-driven, Ruby based and git centered open source configuration management
by CHEF SOFTWARE INC. [7]

SALTSTACK Highly modular and fast, Python based, open source configuration man-
agement solution and remote execution engine by SALTSTACK INC. [37]

ANSIBLE Easy-to-use, streamlined, YAML driven and Python based open source con-
figuration management by RED HAT INC. [24]

Such software usually provides “Infrastructure as Code” (IaC) capabilities, mean-
ing the definition of the configuration in machine-processable form, rather than physical
hardware configuration or interactive configuration clients [42].

While each of the above mentioned solutions is equally capable and in turn outper-
forms the others in specific areas (see section 2.5 for a comparison) the remainder of this
report will focus on ANSIBLE and should serve the reader as an introductory overview to
the platform.

2 Ansible: Automation for everyone
As mentioned earlier, Ansible is a open source configuration management solution writ-
ten in the Python programming language. The term configuration management solution
is often synonymous to writing some sort of state description for machines and then using
the tool to enforce that IT systems reflect the defined state [16]. Similar to other configu-
ration management tools Ansible exposes a domain specific language (DSL) that is used
to describe this desired state.

Apart from configuration management Ansible can also be used for deployment, re-
ferring to the process of compiling software into artefacts, running tests, copying the
required files to server(s) and finally (re)starting the service(s).

Another aspect of deployment often mentioned is orchestration, meaning the man-
agement of multiple remote machines involved in the software release process in respect
to the time domain. For example, it might be necessary to bring up a database server
before booting up web servers or taking machines out of a loadbalancer before starting
the update process. Orchestration is another thing Ansible is good at, as it is specifically
designed to perform actions on multiple servers [16].

Finally, Ansible also handles provisioning, referring to the task of booting up new
virtual machine instances [21].

Author’s Note: What is an Ansible?

An Ansible is a fictional communication device that is capable of transferring in-
formation faster than light invented by the author Ursula K. Le Guin in her book
Rocannon’s World [19].

2

2 ANSIBLE: AUTOMATION FOR EVERYONE 2.1 Characteristics

2.1 Characteristics
Human and machine readable syntax Ansible configuration management scripts are
organised into so called playbooks (see section 2.2). The syntax used within playbooks
is derived from YAML - a data format language designed to be easy for humans to both
read and write [3].

Agentless In contrast to most other CM tools, Ansible does not require an agent to be
installed on managed machines. The only requirements Ansible brings forth are secure
shell access3 and Python 2.5 (or later) to be setup on the system.

SSH-based Ansible connects to managed machines via the secure shell cryptographic
network protocol. This usually implies minimum setup efforts, since SSH is “[...] a
remote management framework that already exists natively on most server platforms”
[31].

Non-Root level access Using SSH as a network protocol enables Ansible to connect to
remote hosts as any user. This facilitates multiple usage scenarios, e.g. there can be a
dedicated ansible user, or changes to the system can be traced back to specific dev(Ops)
personal. In case root access is required, Ansible ships with one of the most powerful
privilege escalation methods available: sudo4 [35].

Push-based Some of the CM tools that are based on agents use a pull-based approach in
which the agents installed on the machines periodically check in with the central manage-
ment server to pull configuration information and changes. The workflow looks roughly
like this (derived from [16]):

1. Dev(Op)5 changes configuration in management script

2. Dev(Op) pushes changes to central configuration management service

3. Agent periodically wakes up

4. Agent connects to central configuration management service

5. Agent pulls new configuration

6. Agent executes configuration management scripts locally to change server state

Ansible’s push-based approach in contrast both simplifies this workflow (“No "man-
aging the management"” [35]) as well as takes out the random time-dependency intro-
duced in step 3 of the pull based workflow, giving the developer full control over when
changes are applied to managed machines:

3Although SSH is the preferred method of accessing remote machines in Ansible, alternative network
protocols can also be used (see [26]).

4sudo := “Sudo (su "do") allows a system administrator to give certain users (or groups of users) the
ability to run some (or all) commands as root while logging all commands and arguments. Sudo operates
on a per-command basis, it is not a replacement for the shell.” [22]

5DevOps := A culture based around collaboration between software developers and other IT profes-
sionals on automation of software delivery and infrastructure changes. [20]

3

2.1 Characteristics 2 ANSIBLE: AUTOMATION FOR EVERYONE

1. Dev(Op) changes playbook

2. Dev(Op) runs playbook

3. Ansible connects to machines and executes modules changing server state

Scaling down Ansible can be used to configure thousands of nodes or just one while
scaling linear6. This means Ansible obeys Alan Kay’s maxim of “Simple things should
be simple, complex things should be possible” [15].

Modularized Architecture Ansible is based on a modularized architecture as opposed
to monolithical approaches. Two principle types of modularisation are distinguished in
Ansible: roles (see section 2.2.3) and modules (see section 2.2). While roles provide
a way to share and reuse plays written for a specific purpose (e.g. setup mongo db),
modules are used to perform tasks on managed machines. These modules are declarative7

in nature, meaning that they are used to describe the desired state of the machine. As an
example consider the following declarative statement to start the nginx service:

service name="nginx" state="started"

The example shows the service module being used to declare that the nginx load-
balancer and web server is started on the remote machine.

No need for convergence In configuration management the term convergence intro-
duced by Mark Burgess’ CFENGINE [5] is an often discussed subject. Convergence in
this context means that a configuration management tool is run multiple times to bring a
machine into the desired state, each run bringing it closer to - i.e. converging toward -
this state [16]. However, this idea does not apply to Ansible as it does not intent to be
run multiple times in order to bring the machine(s) into the desired state. Instead a single
playbook run puts machines into the therein described state of operation (see [10] for a
discussion on the topic by Michael DeHaan, the author of Ansible).

Idempotent Idempotence in the configuration management context means that applying
the exact same configuration multiple times to managed systems does not change the
system state, but it either reaches or keeps the desired state [8]. It therefore stands in direct
contradiction to aforementioned concept of convergence. All Ansible modules should8

adhere to this principle. Development guidelines encompass the policy that “...modules
[...] strive to be ’idempotent’, meaning they will only make changes when the desired
state expressed to the module does not match the current state” [27].

6Θ(n), where n is the number of modules.
7Declarative vs: commanding statements: “service x [is] started” vs. “start service x”.
8Ansible ships with a set of core modules which are guaranteed to adhere to idempotence. Apart from

those core modules, a considerable amount of community contributed modules and roles can be accessed
and integrated easily via the Ansible-Galaxy repository. [36]. When using these third-party components it
is advisable to read their documentation and code carefully to make sure they do not violate this principle.

4

https://groups.google.com/forum/#!topic/ansible-project/WpRblldA2PQ
https://groups.google.com/forum/#!topic/ansible-project/WpRblldA2PQ
https://galaxy.ansible.com/

2 ANSIBLE: AUTOMATION FOR EVERYONE 2.2 The Basics

Thin layer of abstraction As opposed to other configuration management tools Ansi-
ble provides only a thin layer of abstraction. This means that while other tools abstract
operating system specifics, Ansible does not. For example, there is no abstract module for
package management, but instead specific modules targeting the respective OS are avail-
able, such as yum9 or apt10. Though it is possible to write Ansible roles and playbooks in
a way to handle different operating systems, it is not a widely adopted practice to do so.

File based project layout Ansible uses an implicit project structure convention defined
on the filesystem level. This means that Ansible looks if specific directories and files are
present and if so evaluates and incorporates their content (see listing 5).

Dynamic inventory support Ansible supports statically as well as dynamically defined
inventories (see section 2.2.1). An inventory in this context describes the host machines
Ansible operates on. Both approaches can be combined, enabling Ansible to manage
statically configured machines on an internal company network as well as dynamically
booted instances on an arbitrary cloud computing platform like Amazon’s Elastic Com-
pute Cloud [1].

2.2 The Basics

Ansible follows a “play” - as in on a stage - analogy:

Plays are the unit of granularity that associate tasks with hosts.

Tasks are units of granularity that use modules to describe desired system state. Tasks
are executed in sequential order as defined in the play.

Hosts are the machines a task is applied to.

Modules are used to declare the desired system state.

Playbooks are collections of plays.
Consider the example playbook in listing 1. Within this excerpt of a playbook that

configures a mongo db setup, different plays are listed. The first one is named “Install
mongo db” the second one “Setup replica set”. The dashes in front of the names are
YAML syntax for an array of things - namely an array of plays which is how a playbook
is defined. Each play is acted out on the hosts referenced in the play - mongo_servers in
the example, which is a variable referencing a group of servers defined in the inventory
(see section 2.2.1). Following, it is indicated that the play requires root privileges and
some variables are defined. Concluding is the list of tasks which form the play:

9yum := Yellowdog Updater, Modified, a cli package manager for RPM based Linux distributions.
10apt := Advanced Package Tool, set of core tools for package management on Linux systems of the

Debian family.

5

2.2 The Basics 2 ANSIBLE: AUTOMATION FOR EVERYONE

1 −−−
mongodb . yml

3 # p l a y : a s s o c i a t e s t a s k s wi th h o s t s
− name : I n s t a l l mongo db # name of t h e p l a y

5 h o s t s : mongo_se rve r s # h o s t s t o a p p l y t h e t a s k s t o
sudo : True # t h i s p l a y does r e q u i r e r o o t a c c e s s

7 v a r s : # v a r i a b l e d e f i n i t i o n s
mongo_repo_key_ur l : " h t t p : / / . . . "

9 mongo_db_repo_ur l : " deb h t t p : / / "
t a s k s : # l i s t o f t a s k s t o be e x e c u t e d s e q u e n t i a l l y

11 − name : Add mongodb r e p o s i t o r y key # t a s k name
a p t _ k e y : u r l ={{ mongo_repo_key_ur l }} # module d e c l a r a t i o n

13

− name : Add mongodb r e p o s i t o r y
15 a p t _ r e p o s i t o r y : r epo ={{ mongo_db_repo_ur l }} u p d a t e _ c a c h e = yes

17 − name : I n s t a l l mongodb
a p t : mongodb−org s t a t e = i n s t a l l e d

19

− name : Se tup r e p l i c a s e t
21 # . . .

Listing 1: Example Playbook: MongoDB setup

Add mongodb repository key The apt_key module is used to add the authentication
key of the mongo db repository. It is supplied with one argument, the url to the
key which is stored in a variable called mongo_repo_key_url.

Add mongodb repository The apt_repository module is used to add the mongo db
repository. It is supplied two arguments, the url to the repository, which is again
stored in a variable, and update_cache is set to yes, indicating that the package
cache should be updated after adding the repository.

Install mongodb The apt module is used to declare that the package named
mongodb-org should be installed on the system.

See figure 2.1 for a visualisation of the relationships between playbook, plays, hosts,
tasks and modules.

Figure 2.1: Entity relationship between playbook, plays, hosts, tasks and modules [16].

6

2 ANSIBLE: AUTOMATION FOR EVERYONE 2.2 The Basics

1 # h o s t s
[mongo_se rve r s] # group d e f i n i t i o n

3 mongodb . somehos t . example . com # h o s t
mongodb . a n o t h e r h o s t . example . com

5 2 1 6 . 8 1 . 5 9 . 1 7 3

7 # . . .

Listing 2: Example of a static inventory file

2.2.1 Inventory

As has been mentioned in the example above, Ansible plays are executed against specific
hosts. These hosts can either be specified via static inventory files or dynamic inventory
scripts.

Static inventory files can be specified on system level or on a per project ba-
sis in a INI-like format. The system wide configuration file is usually stored at
/etc/ansible/hosts, while for a per project specification a file named hosts is used
which is placed at the root folder of the project, i.e. as a sibling to the playbook. See
listing 2 for an example.

Dynamic inventory scripts are executable scripts, usually decorated by a shebang, that
upon execution return host specification in JSON11 format. This makes it easy to manage
Amazon EC2 [1] instances or Cobbler [6] maintained installations via Ansible (see [28]
for further details).

2.2.2 Variables, Facts & Templates

Variables Ansible allows the definition of variables in a variety of contexts and loca-
tions. The simplest form are variable definitions in plays (see the example in listing 1).
Apart from those, variables can also be specified in a multitude of different files:

hosts It is possible to define (and dereference) variables in inventory files.

vars/ Play(book) and role specific variables should be placed in a YAML file within a
directory named vars (see listings 3 & 5).

defaults/ The defaults directory can contain YAML variable files which are meant to
be default values and therefore likely to be overridden by more specifically targeted
variable definitions.

host_vars/ This directory is meant to harbour YAML variable files targeting specific
hosts. A file containing such definitions intended to be available (and override
otherwise set values) on a specific host, must be named after the host url specified
in the inventory.

11JSON := JavaScript Object Notation, a data interchange format based on the JavaScript object literal
notation. [9]

7

2.2 The Basics 2 ANSIBLE: AUTOMATION FOR EVERYONE

1 # ~ / p l a y b o o k s / myplaybook
. / r o l e s / mongodb / t a s k s / main . yml # t a s k s

3 . / r o l e s / mongodb / f i l e s / # h o l d s f i l e s r e l a t e d t o t h e r o l e
. / r o l e s / mongodb / t e m p l a t e s / # h o l d s j i n j a 2 t e m p l a t e s

5 . / r o l e s / mongodb / h a n d l e r s / main . yml # h a n d l e r s
. / r o l e s / mongodb / v a r s / main . yml # r o l e s p e c i f i c v a r i a b l e s

7 . / r o l e s / mongodb / d e f a u l t s / main . yml # d e f a u l t v a r i a b l e s
. / r o l e s / mongodb / meta / main . yml # dependency i n f o r m a t i o n and m e t a d a t a

Listing 3: Example role file layout: Mongo DB

−−−
2 − h o s t s : mongo_se rve r s

r o l e s :
4 − mongodb

Listing 4: Example role based playbook: Mongo DB

group_vars/ This directory can hold YAML variable files that target specific groups, as
defined in the inventory. Filenames must thereby mirror group names.

command line When invoking ansible[-playbook], variables can be passed as com-
mand line arguments. Any definitions given this way have the highest possible
precedence.

Facts are information Ansible gathers about managed machines. They are readily avail-
able12 for use within playbooks just like any other variables. See [29] for an overview of
available facts.

Templates Ansible supports the JINJA2 templating language. JINJA2 is a Python based
templating language modelled after Django’s templates. It supports a variety of control
structures, such as loops and conditionals, as well as filters. The JINJA2 implementation
that comes with Ansible, is furthermore enhanced via additional, Ansible specific and
exclusive filters (see [30]).

2.2.3 Roles

Since Ansible follows a modular approach, components within the system strive to be
reusable. Roles are reusable components with a granularity level roughly equivalent to
plays enabling upscaling by breaking a playbook into multiple files. Roles are created by
adding a roles directory at the project root level wherein roles are in turn defined in their
own subdirectories. See listing 3 for an exemplary role structure of our mongo db example
demonstrating the implicit role file layout convention. Many community contributed roles
can also be integrated via the ansible-galaxy cli and repository [36].

After splitting up the tasks and variables from the playbook example of listing 1 it can
be refactored to just a few lines (see listing 4).

12If fact_gathering has not been deliberately disabled.

8

http://jinja.pocoo.org/docs/dev/
http://jinja.pocoo.org/docs/dev/
http://jinja.pocoo.org/docs/dev/

2 ANSIBLE: AUTOMATION FOR EVERYONE 2.3 Operation

2.3 Operation
2.3.1 Setup

The Ansible application bundle is readily available through default package management
systems on most Linux operating systems. If not available it can be cloned and built from
source via their GitHub repository [32].

2.3.2 Command Line Interface (CLI)

Once installed on the control machine, the base installation makes several different com-
mands available:

ansible is used to execute ad-hoc commands. The following example demon-
strates invocation of the ping module to check connectivity to the host
mongodb.somehost.example.com:

ansible mongodb.somehost.example.com -m ping

ansible-playbook is used to execute a playbook.

ansible-playbook my-playbook.yml

ansible-doc is used to access man-page like documentation for modules. The follow-
ing example displays the documentation for the file module:

ansible-doc file

ansible-galaxy is used to search for, install, create and publish roles to and from the
Ansible Galaxy repository [36]. The following command searches for roles for the
Elasticsearch [14] search engine:

ansible-galaxy search elasticsearch

2.3.3 Configuration

Many of the behaviours and settings of the Ansible engine can be changed and adapted
to one’s need. Ansible supports both system-wide configuration as well as a per project
configuration via environment variables or configuration files located at the user’s home
folder or at the project root. Precedence is given in the following order:

1. $ANSIBLE_CONFIG - environment variable

2. ./ansible.cfg - configuration file at the project root

3. /.ansible.cfg - configuration file in the user’s home folder

4. /etc/ansible/ansible.cfg - system wide configuration file

For detailed documentation on the available configuration options see [25].

9

https://github.com/ansible/ansible
https://galaxy.ansible.com/
https://www.elastic.co/products/elasticsearch

2.3 Operation 2 ANSIBLE: AUTOMATION FOR EVERYONE

a n s i b l e . c f g # p r o j e c t scoped c o n f i g u r a t i o n
2 f i l e s /

some . con f # f i l e s r e l a t e d t o t h e p laybook
4 h a n d l e r s /

main . yml # h a n d l e r d e f i n i t i o n s
6 g r o u p _ v a r s /

d b s e r v e r s . yml # v a r i a b l e d e f i n i t i o n s f o r t h e d b s e r v e r s i n v e n t o r y
group

8 h o s t _ v a r s /
mongodb . somehos t . example . com . yml # v a r i a b l e d e f i n i t i o n s f o r s p e c i f i c

h o s t s
10 h o s t s # i n v e n t o r y

r o l e s /
12 mongodb /

d e f a u l t s /
14 main . yml # d e f a u l t v a r i a b l e s f o r t h e mongodb r o l e

f i l e s /
16 some . con f # f i l e s r e l a t e d t o t h e r o l e

h a n d l e r s /
18 main . yml # h a n d l e r r e l a t e d t o t h e r o l e

meta /
20 main . yml # m e t a d a t a r e l a t e d t o t h e r o l e

t a s k s /
22 main . yml # t a s k s r e l a t e d t o t h e r o l e

t e m p l a t e s /
24 some . t e m p l a t e . j 2 . con f # t e m p l a t e s r e l a t e d t o t h e r o l e

v a r s /
26 main . yml # v a r i a b l e s r e l a t e d t o t h e r o l e

t e m p l a t e s /
28 some . t e m p l a t e . j 2 . con f # t e m p l a t e s r e l a t e d t o t h e p laybook

v a r s /
30 main . yml # a r b i t r a r y v a r i a b l e s r e l a t e d t o t h e p laybook

Listing 5: Playbook file structure

2.3.4 Playbook Handling

As has been mentioned earlier, Ansible follows a implicit file layout convention to struc-
ture it’s playbooks (see listing 5). When it is executed Ansible generates a Python script
from the contents, connects to the host(s) via SSH and transfers the script. The script is
then executed on the remote machine(s) while Ansible waits for it’s completion. Each
task therein is executed in parallel on all13 hosts defined in the inventory, but execution is
not pipelined14, i.e. Ansible waits until one task is finished on each host before starting
the next.

2.3.5 Maintainance

When maintaining machines which have been setup via Ansible, e.g. updating packages,
changing configuration, etc, all that has to be done is updating and rerunning the playbook.
The idempotent nature of the tool will only update necessary units and leave everything
else untouched.

13“By default, Ansible will try to manage all of the machines referenced in a play in parallel.” [25]
14Indiscriminate execution is disabled by default, see [25] for details.

10

2 ANSIBLE: AUTOMATION FOR EVERYONE 2.4 Showcase: vm-php

2.3.6 Advanced Features & Usage Scenarios

Apart from the thus far mentioned features and use cases Ansible offers more advanced
techniques and features, some of which are listed here in a nutshell:

Handlers are basically tasks triggered by other tasks. They are mainly used to restart
services after configuration changes. Handlers are only ever executed once even if notified
by multiple different tasks.

Registers are a way to capture the output of module invocations into variables for later
use within a play.

Local Actions are tasks executed on the machine running Ansible.

Shebang Ansible introduces it’s own shebang15: #!/usr/bin/env
ansible-playbook

Bash scripts replacement Many of the tasks within DevOps usually implemented in
Bash scripts, e.g. deployment of Docker containers, can easily be done via Ansible re-
ducing complexity, portability as well as error potential.

Trigger CI/CD Ansible can trigger and potentially replace CI/CD tools, as plays and
playbooks are not restricted to configuration of machines, but capable of executing arbi-
trary tasks. This can decrease the number of necessary utilities, make the tool-landscape
more homogenous and reduce learning overhead in personal.

Vagrant integration The Vagrant virtual machine provisioning tool already includes
Ansible as a provisioning option. Funny enough, both tools disagree on their respective
responsibilities: Vagrant regards Ansible as a provisioner, while Ansible defines provi-
sioning as the act of booting up virtual machines, therefore making Vagrant the provi-
sioner.

Jobs It’s versatility, shebang support and non-agent architecture makes Ansible a pre-
destined tool to orchestrate and execute jobs.

Ansible Tower is a elaborate commercial interface to Ansible offering advanced moni-
toring, user management, scheduling and UI to the Ansible CLI [33].

2.4 Showcase: vm-php
To showcase a complete example of an Ansible project, the interrested reader is pointed
towards a VAGRANT provisioning profile for a PHP development environment located at:
https://github.com/haensl/vm-php

15shebang := a special preamble consisting of #! followed by an interpreter directive allowing the
program loader to hand the script to the interpreter it was intended for

11

https://www.docker.com
https://www.ansible.com/tower
https://github.com/haensl/vm-php

2.5 Performance vs. competitors 3 CONCLUSION

2.5 Performance vs. competitors
A comparison of pros and cons of Ansible, Chef, Salt and Puppet compiled from [12]
and [41] can be found in figure 2.2. For further information on how the different tools
perform and where they strive the interested reader is also pointed towards [18] and [4].

Ansible Chef SaltStack Puppet

Strengths • SSH-based
• Easy learning

curve
• Streamlined code

base
• Agentless

• Many modules
• Code driven
• Git centered

• Featurerich DSL
• Good introspection
• High scalability
• High resiliency

• Well established
• Complete UI
• Strong reporting

Weaknesses • Poor introspection
• Poor performance

speed

• Steep learning
curve

• No push
functionality

• Vague
documentation

• Difficult Setup
• Basically Linux-

only
• Weak reporting

• Steep learning
curve

• Codebase can
grow complex

Figure 2.2: Strengths and Weaknesses of Ansible, Chef, Salt and Puppet [12] [41]

Author’s Note: Watch & Learn

For more insights on how the different solutions perform and compare, the author
recommends watching Animesh Singh, Daniel Krook and Paul Czarkowski in their
OpenStack talk: Chef vs. Puppet vs. Ansible vs. Salt - What’s Best for Deploying
and Managing OpenStack? [38].

3 Conclusion
Ansible is a powerful tool capable of far more than just configuration management. It
complements infrastructures based on Docker and Vagrant and is easy to learn and use.
It’s modular approach makes way for a growing community of role and module developers
sharing their work and improving the platform every day. Although Ansible does not
outperform it’s competitors, the author has grown fond of the tool during his learning
journey for this report and can recommend it as a jack-of-many-trades-utility.

12

https://www.openstack.org/summit/tokyo-2015/videos/presentation/chef-vs-puppet-vs-ansible-vs-salt-whats-best-for-deploying-and-managing-openstack
https://www.openstack.org/summit/tokyo-2015/videos/presentation/chef-vs-puppet-vs-ansible-vs-salt-whats-best-for-deploying-and-managing-openstack

REFERENCES REFERENCES

References
[1] AMAZON WEB SERVICES, INC. Amazon Elastic Compute Cloud. https://aws.

amazon.com/ec2/, 2016. Accessed on July 3rd, 2016.

[2] ATLASSSIAN CORP. Bamboo - Build, Test, Deploy. https://www.atlassian.
com/software/bamboo, 2016. Accessed on July 2nd, 2016.

[3] BEN-KIKI, O., EVANS, C., AND INGERSON, B. YAML Ain’t Markup Language
(YAMLTM) Version 1.1. yaml. org, Tech. Rep (2005).

[4] BERTRAM, A. Choosing The Right Configuration Management Tool.
http://www.tomsitpro.com/articles/configuration-management-
tools,2-920.html, June 2015. Accessed on July 2nd, 2016.

[5] BURGESS, M., ET AL. CFEngine: a site configuration engine. In USENIX Computing
systems, Vol (1995), Citeseer.

[6] CAMMARATA, JAMES AND MAAS, JÖRGEN AND DEHAAN, MICHAEL. Cobbler
- linux installation server. http://cobbler.github.io/, 2016. Accessed on July
3rd, 2016.

[7] CHEF SOFTWARE, INC. Chef - Platform Overview. https://www.chef.io/chef/,
2016. Accessed on July 2nd, 2016.

[8] COUCH, A., AND SUN, Y. On the algebraic structure of convergence. In Inter-
national Workshop on Distributed Systems: Operations and Management (2003),
Springer, pp. 28–40.

[9] CROCKFORD, D. JavaScript: The Good Parts: The Good Parts. " O’Reilly Media,
Inc.", 2008.

[10] DEHAAN, M. Idempotence, convergence, and other silly fancy words we use
too often. https://groups.google.com/forum/#!topic/ansible-project/
WpRblldA2PQ, 11 2013. Accessed on July 3rd, 2016.

[11] DOCKER INC. Docker - Build, Ship, Run. https://www.docker.com, 2016. Ac-
cessed on July 2nd, 2016.

[12] DREYFUSS, J. Takipi Blog. Deployment Management Tools: Chef vs. Puppet vs.
Ansible vs. SaltStack vs. Fabric. http://blog.takipi.com/deployment-
management-tools-chef-vs-puppet-vs-ansible-vs-saltstack-vs-
fabric/, 8 2015. Accessed on July 2nd, 2016.

[13] DYBÅ, T., AND DINGSØYR, T. Empirical studies of agile software development:
A systematic review. Information and software technology 50, 9 (2008), 833–859.

[14] ELASTICSEARCHTM. Elasticsearch - Search & Analyze Data in Real Time.
https://www.elastic.co/products/elasticsearch, 2016. Accessed on July
4th, 2016.

13

https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://www.atlassian.com/software/bamboo
https://www.atlassian.com/software/bamboo
http://www.tomsitpro.com/articles/configuration-management-tools,2-920.html
http://www.tomsitpro.com/articles/configuration-management-tools,2-920.html
http://cobbler.github.io/
https://www.chef.io/chef/
https://groups.google.com/forum/#!topic/ansible-project/WpRblldA2PQ
https://groups.google.com/forum/#!topic/ansible-project/WpRblldA2PQ
https://www.docker.com
http://blog.takipi.com/deployment-management-tools-chef-vs-puppet-vs-ansible-vs-saltstack-vs-fabric/
http://blog.takipi.com/deployment-management-tools-chef-vs-puppet-vs-ansible-vs-saltstack-vs-fabric/
http://blog.takipi.com/deployment-management-tools-chef-vs-puppet-vs-ansible-vs-saltstack-vs-fabric/
https://www.elastic.co/products/elasticsearch

REFERENCES REFERENCES

[15] FELDMAN, S., AND KAY, A. C. A conversation with Alan Kay. ACM Queue 2, 9
(2004), 20–30.

[16] HOCHSTEIN, L. Ansible: Up and Running. " O’Reilly Media, Inc.", 2014.

[17] JENKINSTM. Jenkins - Build great things at any scale. https://jenkins.io, 2016.
Accessed on July 2nd, 2016.

[18] LANE, R. Moving away from Puppet: SaltStack or Ansible? http://
ryandlane.com/blog/2014/08/04/moving-away-from-puppet-saltstack-
or-ansible/, August 2014. Accessed on July 2nd, 2016.

[19] LE GUIN, U. K. Rocannon’s World. Ace Books, 1966.

[20] LOUKIDES, M. What is DevOps? O’Reilly Media, Inc., 2012.

[21] MIETZNER, R., AND LEYMANN, F. Towards provisioning the cloud: On the usage
of multi-granularity flows and services to realize a unified provisioning infrastructure
for saas applications. In 2008 IEEE Congress on Services-Part I (2008), IEEE, pp. 3–
10.

[22] MILLER, T. C. Sudo. https://www.sudo.ws, 2016. Accessed on July 4th, 2016.

[23] PUPPET LABS. Puppet - Opensource configuration management. https://
puppet.com, 2016. Accessed on July 2nd, 2016.

[24] RED HAT, INC. Ansible - Automation for everyone. https://www.ansible.com,
2016. Accessed on July 2nd, 2016.

[25] RED HAT, INC. Ansible Documentation - Configuration File. http://docs.
ansible.com/ansible/intro_configuration.html, 2016. Accessed on July
4th, 2016.

[26] RED HAT, INC. Ansible Documentation - Configuration File: transport. http://
docs.ansible.com/ansible/intro_configuration.html#transport, 2016.
Accessed on July 4th, 2016.

[27] RED HAT, INC. Ansible Documentation - Developer Information: Developing
Modules - Conventions/Recommendations. http://docs.ansible.com/ansible/
developing_modules.html#conventions-recommendations, 2016. Accessed
on July 3rd, 2017.

[28] RED HAT, INC. Ansible Documentation - Dynamic Inventory. http://docs.
ansible.com/ansible/intro_dynamic_inventory.html, 2016. Accessed on
July 3rd, 2016.

[29] RED HAT, INC. Ansible Documentation - Information discovered from sys-
tems: Facts. http://docs.ansible.com/ansible/playbooks_variables.
html#information-discovered-from-systems-facts, 2016. Accessed on July
5th, 2016.

[30] RED HAT, INC. Ansible Documentation - Jinja2 filters. http://docs.ansible.
com/ansible/playbooks_filters.html, 2016. Accessed on July 5th, 2016.

14

https://jenkins.io
http://ryandlane.com/blog/2014/08/04/moving-away-from-puppet-saltstack-or-ansible/
http://ryandlane.com/blog/2014/08/04/moving-away-from-puppet-saltstack-or-ansible/
http://ryandlane.com/blog/2014/08/04/moving-away-from-puppet-saltstack-or-ansible/
https://www.sudo.ws
https://puppet.com
https://puppet.com
https://www.ansible.com
http://docs.ansible.com/ansible/intro_configuration.html
http://docs.ansible.com/ansible/intro_configuration.html
http://docs.ansible.com/ansible/intro_configuration.html#transport
http://docs.ansible.com/ansible/intro_configuration.html#transport
http://docs.ansible.com/ansible/developing_modules.html#conventions-recommendations
http://docs.ansible.com/ansible/developing_modules.html#conventions-recommendations
http://docs.ansible.com/ansible/intro_dynamic_inventory.html
http://docs.ansible.com/ansible/intro_dynamic_inventory.html
http://docs.ansible.com/ansible/playbooks_variables.html#information-discovered-from-systems-facts
http://docs.ansible.com/ansible/playbooks_variables.html#information-discovered-from-systems-facts
http://docs.ansible.com/ansible/playbooks_filters.html
http://docs.ansible.com/ansible/playbooks_filters.html

REFERENCES REFERENCES

[31] RED HAT, INC. Ansible In Depth. Tech. rep., Red Hat, Inc., 2016.

[32] RED HAT, INC. Ansible on GitHub. https://github.com/ansible/ansible,
2016. Accessed on July 4th, 2016.

[33] RED HAT, INC. Ansible Tower - Mission Control for Ansible. https://www.
ansible.com/tower, 2016. Accessed on July 7th, 2016.

[34] RED HAT, INC. Continuous integration and continuous delivery with Ansible. Tech.
rep., 2016.

[35] RED HAT, INC. The Benefits of Agentless Architecture. Tech. rep., Red Hat, Inc.,
2016.

[36] REDHAT, INC. Ansible Galaxy - Your hub for finding, reusing and sharing the best
Ansible content. https://galaxy.ansible.com/, 2016. Accessed on July 3rd,
2016.

[37] SALTSTACK, INC. SaltStack - Automation for enterprise IT ops, event-driven data
centre orchestration and the most flexible configuration management for DevOps at
scale. https://saltstack.com/, 2016. Accessed on July 2nd, 2016.

[38] SINGH, A., KROOK, D., AND CZARKOWSKI, P. Chef vs. Puppet vs.
Ansible vs. Salt - What’s Best for Deploying and Managing OpenStack?
https://www.openstack.org/summit/tokyo-2015/videos/presentation/
chef-vs-puppet-vs-ansible-vs-salt-whats-best-for-deploying-and-
managing-openstack, 10 2015. Accessed on July 5th, 2016.

[39] TEAM, C. P. D. CMMI for Systems Engineering/Software Engineering, Version
1.02, Staged Representation (CMMI-SE/SW, V1.02, Staged). Tech. Rep. CMU/SEI-
2000-TR-018, Software Engineering Institute, Carnegie Mellon University, Pitts-
burgh, PA, 2000.

[40] VAN DER HAAGEN, E. Cloudbees - Emily van der Haagen’s blog.
2015 Predictions for Continuous Integration and Continuous Delivery.
https://www.cloudbees.com/blog/2015-predictions-continuous-
integration-and-continuous-delivery, 12 2014. Accessed on July 2nd,
2016.

[41] VENEZIA, P. InfoWorld - Review: Puppet vs. Chef vs. Ansible vs.
Salt. http://www.infoworld.com/article/2609482/data-center/data-
center-review-puppet-vs-chef-vs-ansible-vs-salt.html, 11 2013. Ac-
cessed on July 5th, 2016.

[42] WITTIG, A., AND WITTIG, M. Amazon Web Services in Action. Manning Publica-
tions Co., 2015.

15

https://github.com/ansible/ansible
https://www.ansible.com/tower
https://www.ansible.com/tower
https://galaxy.ansible.com/
https://saltstack.com/
https://www.openstack.org/summit/tokyo-2015/videos/presentation/chef-vs-puppet-vs-ansible-vs-salt-whats-best-for-deploying-and-managing-openstack
https://www.openstack.org/summit/tokyo-2015/videos/presentation/chef-vs-puppet-vs-ansible-vs-salt-whats-best-for-deploying-and-managing-openstack
https://www.openstack.org/summit/tokyo-2015/videos/presentation/chef-vs-puppet-vs-ansible-vs-salt-whats-best-for-deploying-and-managing-openstack
https://www.cloudbees.com/blog/2015-predictions-continuous-integration-and-continuous-delivery
https://www.cloudbees.com/blog/2015-predictions-continuous-integration-and-continuous-delivery
http://www.infoworld.com/article/2609482/data-center/data-center-review-puppet-vs-chef-vs-ansible-vs-salt.html
http://www.infoworld.com/article/2609482/data-center/data-center-review-puppet-vs-chef-vs-ansible-vs-salt.html

	Configuration Management
	Ansible: Automation for everyone
	Characteristics
	The Basics
	Inventory
	Variables, Facts & Templates
	Roles

	Operation
	Setup
	Command Line Interface (CLI)
	Configuration
	Playbook Handling
	Maintainance
	Advanced Features & Usage Scenarios

	Showcase: VMPHP
	Performance vs. competitors

	Conclusion

